Characterizing the eddy field in the Arctic Ocean halocline
نویسندگان
چکیده
Ice-Tethered Profilers (ITP), deployed in the Arctic Ocean between 2004 and 2013, have provided detailed temperature and salinity measurements of an assortment of halocline eddies. A total of 127 mesoscale eddies have been detected, 95% of which were anticyclones, the majority of which had anomalously cold cores. These cold-core anticyclonic eddies were observed in the Beaufort Gyre region (Canadian water eddies) and the vicinity of the Transpolar Drift Stream (Eurasian water eddies). An Arctic-wide calculation of the first baroclinic Rossby deformation radius Rd has been made using ITP data coupled with climatology; Rd 13 km in the Canadian water and 8 km in the Eurasian water. The observed eddies are found to have scales comparable to Rd. Halocline eddies are in cyclogeostrophic balance and can be described by a Rankine vortex with maximum azimuthal speeds between 0.05 and 0.4 m/s. The relationship between radius and thickness for the eddies is consistent with adjustment to the ambient stratification. Eddies may be divided into four groups, each characterized by distinct core depths and core temperature and salinity properties, suggesting multiple source regions and enabling speculation of varying formation mechanisms.
منابع مشابه
Eddy transport of organic carbon and nutrients from the Chukchi Shelf: Impact on the upper halocline of the western Arctic Ocean
[1] In September 2004 a detailed physical and chemical survey was conducted on an anticyclonic, cold-core eddy located seaward of the Chukchi Shelf in the western Arctic Ocean. The eddy had a diameter of 16 km and was centered at a depth of 160 m between the 1000 and 1500 m isobaths over the continental slope. The water in the core of the eddy (total volume of 25 km) was of Pacific origin, and ...
متن کاملSource and Pathway of the Western Arctic Upper Halocline in a Data-Constrained Coupled Ocean and Sea Ice Model
A coupled ocean and sea ice model is used to investigate dense water (DW) formation in the Chukchi and Bering shelves and the pathways by which this water feeds the upper halocline. Two 1992–2008 dataconstrained solutions at 9and 4-km horizontal grid spacing show that 1) winter sea ice growth results in brine rejection and DW formation; 2) the DW flows primarily down Barrow and Central–Herald C...
متن کاملThe Effect of Vertical Mixing on the Atlantic Water Layer Circulation in the Arctic Ocean
An ice-ocean model has been used to investigate the effect of vertical mixing on the circulation of the Atlantic Water layer (AL) in the Arctic Ocean. The motivation of this study comes from the disparate AL circulations in the various models that comprise the Arctic Ocean Model Intercomparison Project (AOMIP). It is found that varying vertical mixing significantly changes the ocean’s stratific...
متن کاملEffect of vertical mixing on the Atlantic Water layer circulation in the Arctic Ocean
[1] An ice-ocean model has been used to investigate the effect of vertical mixing on the circulation of the Atlantic Water layer (AL) in the Arctic Ocean. The motivation of this study comes from the disparate AL circulations in the various models that comprise the Arctic Ocean Model Intercomparison Project (AOMIP). It is found that varying vertical mixing significantly changes the ocean’s strat...
متن کاملSeasonally derived components of the Canada Basin halocline
The Arctic halocline stratification is an important barrier to the transport of deep ocean heat to the underside of sea ice. Surface water in the Chukchi Sea, warmed in summer by solar radiation, ventilates the Canada Basin halocline to create a warm layer below the mixed-layer base. The year-round persistence of this layer is shown to be consistent with the seasonal cycle of halocline ventilat...
متن کامل